Publication & Service
Selected Publication
^ : corresponding author
** : directly supervised research staffs (Postdoc, Research Associate, etc.)
* : directly supervised students
Journals
M. T. Furqon*, M. Pratama^, A. Shiddiqi, L. Liu, Habibullah, K. Dogancay, Time and Frequency Synergy for Source-Free Time-Series Domain Adaptations, Information Sciences, 2024 - Core A (Codes: https://github.com/furqon3009/TFDA)
M. A. Ma'sum*, M. Pratama^, R. Savitha, L. Liu, Habibullah, R. Kowalczyk, Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification, IEEE Transactions on Geoscience and Remote Sensing, 2024 - IF: 7.5 (Codes: https://github.com/anwarmaxsum/UNISA)
M. A. Ma'sum*, M. Pratama^, E. Lughofer, L. Liu, Habibullah, R. Kowalczyk, Few-Shot Continual Learning via Flat-to-Wide Approaches, IEEE Transactions on Neural Networks and Learning Systems, 2024 - IF: 10.4 (Codes: https://github.com/anwarmaxsum/FLOWER)
W. Weng*, M. Pratama^, J. Zhang, C. Chen, E. Yapp Kien-Yee, R. Savitha, Cross-Domain Continual Learning via CLAMP, Information Sciences, 2024 - IF: 8.1 (Codes: https://github.com/wengweng001/CLAMP_torch.git)
N. Paeedeh*, M. Pratama^, S. Wibirama, W. Mayer, Z. Cao, R. Kowalczyk, Few-Shot Class Incremental Learning via Robust Transformer Approach, Information Sciences, 2024 - IF: 8.1 (Codes: https://github.com/Naeem-Paeedeh/ROBUSTA)
M. T. Furqon*, M. Pratama^, L. Liu, Habibullah, K. Dogancay, Mixup Domain Adaptations for Dynamic Remaining Useful Life Predictions, Knowledge-based Systems, 2024 - IF: 8.8 (Codes: https://github.com/furqon3009/MDAN)
M. A. Masum*, MD. R. Sarkar*, M. Pratama^, R. Savitha, S. Anavatti, L. Liu, Habibullah, R. Kowalczyk, Dynamic Long-Term Time-Series Forecasting via Meta Transformer Networks, IEEE Transactions on Artificial Intelligence, 2024 (Codes: https://github.com/anwarmaxsum/MANTRA)
N. Paeedeh*, M. Pratama^, M. A. Masum, W. Mayer, Z. Cao, R. Kowalczyk, Cross-Domain Few-Shot Learning via Adaptive Transformer Networks, Knowledge-based Systems, 2024 - IF: 8.8 (Codes: https://github.com/Naeem-Paeedeh/ADAPTER)
Md. R. Sarkar*^, S. G. Anavatti, T. Dam, Md. M. Ferdaus, M. Tahtali, S. Ramasamy, M. Pratama, GATE: A Guided Approach for Time Series Ensemble Forecasting, Expert Systems with Applications, 2023
M.A. Ma'sum*, M. Pratama, E. Lughofer, W. Ding, W. Jatmiko, Assessor-Guided Learning for Continual Environments, Information Sciences, 2023 - IF: 8.1 (Codes: https://github.com/anwarmaxsum/AGLA)
C-S. Tan*, A. Gupta^, Y-S. Ong, M. Pratama, P-S. Tan, S-K. Lam, Pareto optimization with small data by learning across common objective spaces, Scientific Reports, 2023
W Ding^, M Abdel-Basset, H Hawash, M Pratama, W Pedrycz, Generalizable Segmentation of COVID-19 Infection From Multi-Site Tomography Scans: A Federated Learning Framework, IEEE Transactions on Emerging Topics in Computational Intelligence, 2023
E. Lughofer^, M. Pratama, Evolving multi-user fuzzy classifier system with advanced explainability and interpretability aspects, Information Fusion, 2022 - IF: 17.56
M. De Carvalho*, M. Pratama^, J. Zhang, E. Yapp Kien-Yee, ACDC: Online Unsupervised Cross-Domain Adaptation, Knowledge-based Systems, 2022 - IF: 8.139 (Codes: https://github.com/Ivsucram/ACDC)
*W. Weng, M. Pratama^, C. Za'in*, M. De Carvalho*, R. Appan*, A. Ashfahani*, E. Yapp Kien-Yee, Autonomous Cross Domain Adaptation under Extreme Label Scarcity, IEEE Transactions on Neural Networks and Learning Systems, 2022 - IF: 14.255 (Codes: https://github.com/wengweng001/LEOPARD.git )
*Abhay M S Aradhya, *Andri Ashfahani, *Fienny Angelina, M. Pratama^, R. F. de Mello, S. Sundaram, Autonomous CNN (AutoCNN): A Data-Driven Approach to Network Architecture Determination, Information Sciences, 2022 - IF: 8.233 (Codes: https://tinyurl.com/AutoCNN)
*A. Ashfahani, M. Pratama, Unsupervised Continual Learning in Streaming Environments, IEEE Transactions on Neural Networks and Learning Systems, 2022 - IF: 14.255 (Codes: https://github.com/andriash001/AutonomousDCN.git)
M. Pratama^, E. Lughofer, P. Angelov, Editorial: Special Issue on Recent Progress in Autonomous Machine Learning, Information Sciences, 2022 - IF: 8.233
R. Xie**, M. Pratama^, Automatic Online Multi-Source Domain Adaptation, Information Sciences, 2021 - IF: 8.233 (Codes: https://github.com/Renchunzi-Xie/AOMSDA.git)
M. Pratama^, C. Za’in*, E. Lughofer, E. Pardede, D. Rahayu, Scalable teacher forcing network for semi-supervised large scale data streams, Information Sciences, pp. 407-431, 2021 - IF: 8.233 (Codes: https://doi.org/10.21979/N9/CX0PDV)
F. Mao**, W. Weng**, M. Pratama^, E. Yapp Kien-Yee, Continual learning via inter-task synaptic mapping, Knowledge-based Systems, Vol. 222, 2021 - IF: 8.139 (Codes: https://doi.org/10.21979/N9/JVCTU3)
S. Subharjit**, M. Pratama, S. Suresh, Bayesian Neuro-Fuzzy Inference System (BaNFIS) for Temporal Dependency Estimation, IEEE Transactions on Fuzzy Systems, 2020 - IF: 12.25
M Pratama^, E Dimla, T Tjahjowidodo, W Pedrycz, E Lughofer, Online tool condition monitoring based on parsimonious ensemble+, IEEE transactions on cybernetics 50 (2), 664-677, 2020 - IF: 19.11 (Codes: https://doi.org/10.21979/N9/GGBFMO)
MM Ferdaus*, M Pratama^, SG Anavatti, MA Garratt, E Lughofer, PAC: A novel self-adaptive neuro-fuzzy controller for micro aerial vehicles, Information Sciences 512, 481-505, 2020 - IF: 8.233
Q Cai**, S Alam, M Pratama, J Liu, Robustness Evaluation of Multipartite Complex Networks Based on Percolation Theory, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020 - IF: 11.471
M. Das**, M. Pratama, S. K. Gosh, SARDINE: A Self-Adaptive Recurrent Deep Incremental Network Model for Spatio-Temporal Prediction of Remote Sensing Data, ACM Trans. Spatial Algorithms Syst. 6(3): 16:1-16:26 (2020)
S Samanta*, M Pratama^, S Sundaram, A novel spatio-temporal fuzzy inference system (spatfis) and its stability analysis, Information Sciences 505, 84-99, 2019 - IF: 8.233
S Samanta*, M Pratama^, S Sundaram, N Srikanth, Learning elastic memory online for fast time series forecasting, Neurocomputing, Vol. 390, pp. 315-326, 2020 - IF: 5.779
A Ashfahani*, M Pratama^, E Lughofer, YS Ong, DEVDAN: Deep evolving denoising autoencoder, Neurocomputing, Vol. 390, pp. 297-314, 2020 - IF: 5.779 (Python Codes: https://doi.org/10.21979/N9/5QAWOV, Matlab Codes: https://doi.org/10.21979/N9/KPULXP)
M Pratama^, W Pedrycz, GI Webb, An incremental construction of deep neuro fuzzy system for continual learning of non-stationary data streams, IEEE Transactions on Fuzzy Systems, Vol. 28(7), pp. 1315-1328, 2020 - IF: 12.25 (Codes: https://doi.org/10.21979/N9/LVFNVG)
M Pratama^, D Wang, Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams, Information Sciences 495, 150-174, 2019 - IF: 8.233 (Codes: https://doi.org/10.21979/N9/4KTA08)
MM Ferdaus*, M Pratama^, S Anavatti, MA Garratt, Y Pan, Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles, IEEE Transactions on Fuzzy Systems, Vol.28(8), pp. 1542-1556, 2020 - IF: 12.25 (Codes: https://tinyurl.com/dfuefxc2)
MM Ferdaus*, M Pratama^, SG Anavatti, MA Garratt, PALM: An incremental construction of hyperplanes for data stream regression, IEEE Transactions on Fuzzy Systems 27 (11), 2115-2129, 2019 - IF: 12.25 (Codes: https://doi.org/10.21979/N9/CZJLQ5)
M. Pratama^, W. Pedrycz, E. Lughofer, Evolving Ensemble Fuzzy Classifier, IEEE Transactions on Fuzzy Systems, 26 (5), 2552-2567, 2018 - IF: 12.25 (Codes: https://doi.org/10.21979/N9/9QM7H6)
M. Pratama^, E. Lughofer, P. Angelov, M-J.Er, Parsimonious Random Vector Functional Link Network for Data Streams, Information Sciences, Vol. 430, pp. 519-537, 2018 - IF: 8.233 (Codes: https://doi.org/10.21979/N9/FVZOI9)
E.Lughofer, M. Pratama, On-line Active Learning in Data Stream Regression employing Evolving Generalized Fuzzy Models with Certainty Sampling, IEEE Transactions on Fuzzy Systems, Vol. 26(1), pp. 262-309, 2018 - IF: 12.25
M. Pratama^, J. Lu, G. Zhang, Evolving Type-2 Fuzzy Classifier. IEEE Trans. Fuzzy Syst. 24(3): 574-589 (2016) - IF: 12.25
M. Pratama^, S. Anavatti, E. Lughofer, GENEFIS: Toward an Effective Localist Network. IEEE Trans. Fuzzy Syst. 22(3): 547-562 (2014) - IF: 12.25
M. Pratama^, S. Anavatti, P. Angelov, E. Lughofer, PANFIS: A Novel Incremental Learning Machine. IEEE Trans. Neural Networks Learn. Syst. 25(1): 55-68 (2014) - IF: 14.255
Conferences
M. A. Masum*^, M. Pratama, R. Savitha, L. Liu, Habibullah, R. Kowalczyk, PIP: Prototypes-Injected Prompt for Federated Class Incremental Learning, 33rd ACM International Conference on Information and Knowledge Management (CIKM), 2024, Core A (Codes: https://github.com/anwarmaxsum/PIP)
R. Appan*, S-K. Lam, M. Pratama, M. De Carvalho*, Graph Mining Under Data Scarcity, IJCNN, 2024 - Core B
M. De Carvalho*, M. Pratama, J. Zhang, H. Chua, E. Y. Kien Yee, Towards Cross-Domain Continual Learning, 40th IEEE International Conference on Data Engineering (ICDE 2024), Core A* (Codes: https://github.com/Ivsucram/CDCL)
A. Rakaraddi*, S-K. Lam, M. Pratama, M. De Carvalho*, Reinforced Continual Learning for Graphs, CIKM 2022 - Core A (Codes: https://github.com/codexhammer/gcl)
T. Dam*, MD. M. Ferdaus*, M. Pratama, S. Anavatti, S. Jayavelu, H. Abbass, Latent Preserving Generative Adversarial Network for Imbalance classification, ICIP 2022 - Core B (Codes: https://github.com/TanmDL/SLPPL-GAN)
T. Dam*, M. Pratama^, MD. M. Ferdaus*, S. Anavatti, H. Abbas, Scalable Adversarial Online Continual Learning, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022 - Core A (Codes: https://github.com/TanmDL/SCALE)
M. De Carvalho*, M. Pratama, J. Zhang, Y. Sun, Class-Incremental Learning via Knowledge Amalgamation, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022 - Core A (Codes: https://github.com/Ivsucram/CFA)
A. Rakaraddi*, M. Pratama^, Unsupervised Learning for Identifying High Eigenvector Centrality Nodes: A Graph Neural Network Approach, IEEE BigData 2021 - Core B (Codes: https://github.com/codexhammer/CUL)
M. Pratama^, A. Ashfahani*, E. Lughofer, Unsupervised Continual Learning via Self-Adaptive Deep Clustering Approach, International Joint Conference on Artificial Intelligence Workshop on Continual Semi-Supervised Learning, 2021 (1st CSSL@IJCAI) (Codes: https://doi.org/10.21979/N9/P9DFJH)
A. Ashfahani*, M. Pratama, E. Lughofer, E. Yapp, Autonomous Deep Quality Monitoring in Streaming Environments, IJCNN, 2021 - Core B (Codes: https://doi.org/10.21979/N9/LZEBMP)
B. Kocer**, A. Hady**, H. Kandath**, M. Pratama, Deep Neuromorphic Controller with Dynamic Topology for Aerial Robots, ICRA, 2021 - Core B (Codes: https://tinyurl.com/2fp7zy2c)
M. Das**, M. Pratama, T. Tjahjowidodo, A Self-Evolving Mutually-Operative Recurrent Network-based Model for Online Tool Condition Monitoring in Delay Scenario, KDD, 2020, pp. 2775-2783 - Core A*
M. Das**, M. Pratama, J. Zhang, Y-S. Ong, A Skip-connected Evolving Recurrent Neural Network for Data Stream Classification under Label Latency Scenario, in proceeding of 34th AAAI conference on Artificial Intelligence, 2020, New York, USA - Core A*
M. Pratama, A. Ashfahani*, A. Hadi**, Weakly Supervised Deep Learning Approach in Streaming Environments. IEEE BigData 2019: 1195-1202 - Core B (Codes: https://doi.org/10.21979/N9/UU5EVH)
K. Anam, S. Bukhori, F. S. Hanggara, M. Pratama, Subject-independent Classification on Brain-Computer Interface using Autonomous Deep Learning for finger movement recognition. EMBC 2020: 447-450
AMS. Aradya*, S. Sundaram, M. Pratama, Metaheuristic Spatial Transformation (MST) for accurate detection of Attention Deficit Hyperactivity Disorder (ADHD) using rs-fMRI. EMBC 2020: 2829-2832
S. Subhajit*, M. Pratama, S. Sundaram, N. Srikanth, A Dual Network Solution (DNS) for Lag-Free Time Series Forecasting. IJCNN 2020: 1-8 - Core B
M Das**, M Pratama, S Savitri**, J Zhang, MUSE-RNN: A Multilayer Self-Evolving Recurrent Neural Network for Data Stream Classification, in proceeding of 2019 IEEE International Conference on Data Mining (ICDM), 110-119, 2019, Beijing, China - Core A*
M Pratama, C Za'in*, A Ashfahani*, YS Ong, W Ding, Automatic construction of multi-layer perceptron network from streaming examples, Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 1171-1180, 2019, Beijing, China - Core A (Python Codes: https://doi.org/10.21979/N9/JG7NJS, Matlab Codes: https://doi.org/10.21979/N9/YIEZYN)
M Pratama, M de Carvalho**, R Xie**, E Lughofer, J Lu, ATL: Autonomous Knowledge Transfer from Many Streaming Processes, Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 269-278, 2019, Beijing, China - Core A (Python Codes: https://github.com/Ivsucram/ATL_Python, Matlab codes: https://github.com/Ivsucram/ATL_Matlab)
A Ashfahani*, M Pratama, Autonomous deep learning: Continual learning approach for dynamic environments, in Proceedings of the 2019 SIAM International Conference on Data Mining, 666-674, 2019, Calgary, Canada - Core A (Python Codes: https://doi.org/10.21979/N9/PR0LV2 , Matlab codes: https://doi.org/10.21979/N9/R97JSN)
AMS Aradhya*, A Joglekar, S Suresh, M Pratama, Deep Transformation Method for Discriminant Analysis of Multi-Channel Resting State fMRI, Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2556-2563, 2019, Hawai, USA - Core A*
C. Za’in*, A. Ashfahani*, M. Pratama, E. Lughofer, E. Pardede, Scalable Teacher-Forcing Networks under Spark Environments for Large-Scale Streaming Problems. EAIS 2020: 1-8 (Codes: https://doi.org/10.21979/N9/BCBECU)
B. Kocer**, M. Tiryaki, M. Pratama, T. Tjahjowidodo, G. G. Lem Seet, Aerial Robot Control in Close Proximity to Ceiling: A Force Estimation-based Nonlinear MPC. IROS 2019: 2813-2819 - Core A
M. Das**, M. Pratama, A. Ashfahani*, S. Subhrajit*, FERNN: A Fast and Evolving Recurrent Neural Network Model for Streaming Data Classification. IJCNN 2019: 1-8 - Core B
MM. Ferdaus*, A. Hady**, M. Pratama, H. Kandath**, S. Anavatti, RedPAC: A Simple Evolving Neuro-Fuzzy-based Intelligent Control Framework for Quadcopter. FUZZ-IEEE 2019: 1-7 - Core B (Codes: https://doi.org/10.21979/N9/LJX9LZ)
H. Kandath**, A. Hady*, M. Pratama, B.F. Ng, Robust Evolving Neuro-Fuzzy Control of a Novel Tilt-rotor Vertical Takeoff and Landing Aircraft. FUZZ-IEEE 2019: 1-6 - Core B (Codes: https://doi.org/10.21979/N9/GVISVM)
S. Ozawa, Ah-Hwee Tan, P. P. Angelov, A. Roy, M. Pratama, INNS Conference on Big Data and Deep Learning 2018, Sanur, Bali, Indonesia, 17-19 April 2018. Procedia Computer Science 144, Elsevier 2018
For a full list of publication, one can check my google scholar, DBLP or UniSA homepage.
Other codes of our papers might be made available upon requests. Please kindly approach me.
Special Issue
M. Pratama, P. Angelov, E. Lughofer, Recent Progress on Autonomous Machine Learning, Information Sciences
M. Pratama, E.Lughofer, D. Wang, Online Real-Time Learning Strategies for Data Streams , Neurocomputing
M. Pratama, E. Lughofer, S. Suresh, M.S. Mouchaweh, Advanced Soft Computing for Prognostics Health Management, Applied Soft Computing
Service
Leadership Team, Industrial AI, STEM, UniSA
Senior Associate Editor, IEEE Transactions on Neural Networks and Learning Systems (IF: 14.255)
Associate Editor, IEEE Transactions on Fuzzy Systems (IF: 12.029)
Associate Editor, Information Sciences (IF: 6.795)
Associate Editor, Knowledge-based Systems (IF: 8.08)
Associate Editor, Complex & Intelligent Systems (IF: 6.859)
Associate Editor, Neural Networks (IF: 6.0)
Area Editor, Evolving Systems (IF: 2.070)
Associate Editor, Journal of Control and Decision
Editor in Chief, International Journal of Business Intelligence and Data Mining (stepped down in 2022)
IEEE CIS Emergent Technologies, Technical Committee
IEEE CIS Singapore Chapter, ExCom
Tutorial and Keynote Chair, IEEE SSCI 2022
Koordinator Klaster Keahlian Telekomunikasi, Robotics, IT, AI, Big Data, Ikatan Ilmuwan Indonesia Internasional (2020 - present)
Senior Program Committee of IJCAI
Program Committee, AAAI, ICLR, ICONIP, ICMLA, FUZZ-IEEE, CIKM, etc.
Scientific Committee, 12th Conference on Learning Factories (CLF2022)
Tutorial on AML in IEEE SSCI 2020
Program Chair of IEEE ICA 2022
Program Chair of INNS BDDL 2018
General Chair of 1st ICDM Workshop on AML 2019
Local Arrangement Chair of ICBK 2018
Publication Chair, IEEE SSCI, 2018